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We present a detailed numerical study of a microscopic artificial swimmer realized recently by Dreyfus et al.
in experiments �Dreyfus et al., Nature 437, 862 �2005��. It consists of an elastic filament composed of
superparamagnetic particles that are linked together by DNA strands. Attached to a load particle, the resulting
swimmer is actuated by an oscillating external magnetic field so that it performs a nonreciprocal motion in
order to move forward. We model the superparamagnetic filament by a bead-spring configuration that resists
bending like a rigid rod and whose beads experience friction with the surrounding fluid and hydrodynamic
interactions with each other. We show that, aside from finite-size effects, its dynamics is governed by the
dimensionless sperm number, the magnitude of the magnetic field, and the angular amplitude of the field’s
oscillating direction. Then we study the mean velocity and the efficiency of the swimmer as a function of these
parameters and the size of the load particle. In particular, we clarify that the real velocity of the swimmer is
influenced by two main factors, namely the shape of the beating filament �determined by the sperm number and
the magnetic-field strength� and the oscillation frequency. Furthermore, the load size influences the perfor-
mance of the swimmer and has to be chosen as a compromise between the largest swimming velocity and the
best efficiency. Finally, we demonstrate that the direction of the swimming velocity changes in a symmetry-
breaking transition when the angular amplitude of the field’s oscillating direction is increased, in agreement
with experiments.
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I. INTRODUCTION

Nature was very inventive to design mechanisms that
micro-organisms such as bacteria and many eukaryotic cells
use to propel themselves in a highly viscous environment,
i.e., at very low Reynolds numbers �1�. Since they cannot
rely on drifting by inertia, as we do when we swim in water,
they immediately come to a halt when they stop with their
beating motion. In this paper we study in detail a micro-
scopic artificial swimmer �2� that was constructed recently
on the basis of a superparamagnetic elastic filament that
mimics the so-called flagellum employed by many eukary-
otic cells �1�.

In 1977 Purcell pointed out in his famous article “Life at
low Reynolds number” that micro-organisms have to per-
form a nonreciprocal periodic motion to be able to move
forward �3� �see also �4��. Nonreciprocal means that the
time-reversed motion is not the same as the original one �for
example, see �5–10��. The reason lies in the Stokes equations
�11� governing the fluid flow around the micro-organisms for
negligible inertia: they allow for a time-inverted flow pattern
when all the external forces are inverted.

Bacteria employ a marvelous rotary motor to crank a rela-
tively stiff helical filament �12,13�. Spermatozoa as one ex-
ample for eukaryotic cells move forward by creating bending
waves that move along their elastic flagella from the head to
the tail �14–16�. While these waves are generated by a col-
lective motion of internal molecular motors �17,18�, Dreyfus
et al. use an external magnetic field to induce the beating of
a superparamagnetic filament attached to a red-blood cell �2�.
The filaments are made from superparamagnetic colloidal
particles of micron size. A static external magnetic field in-
duces dipoles in the colloids so that they form a chain. In the

gaps between the charged colloids chemical linkers such as
double-stranded DNA are attached to the particles and an
elastic filament resisting bending and stretching is formed
�19–21� �for similar systems see �22��. As demonstrated by
the impressive experiments of Dreyfus et al., an oscillating
external magnetic field now induces a nonreciprocal beating
motion of the superparamagnetic filament that is able to
move the attached red-blood cell forward.

So far, the modeling of the dynamics of the superpara-
magnetic filament followed the elastohydrodynamics of an
elastic rod �18,23� supplemented by a continuum version for
the interaction of the magnetic-field induced dipoles �2,24�
or a simpler description for the interaction with the magnetic
field �25�. The authors are able to describe the dynamics of
the filament �24,25� and the velocity curve of the artificial
swimmer �2�. Here we present a different description of the
artificial swimmer similar to the one used by Lagomarsino
and Lowe for driven microfilaments �26,27�. We take into
account the discrete nature of the superparamagnetic filament
by modeling it as a sequence of beads, and, in contrast to the
work of Roper et al. �24�, we consider dipolar and hydrody-
namic interactions between all the beads. We present a thor-
ough investigation of the swimming velocity and efficiency
as a function of the relevant parameters, study the influence
of the size of the load attached to the filament, and demon-
strate that the swimmer can take different directions via a
symmetry-breaking transition depending on how the actuat-
ing magnetic field oscillates.

In Sec. II we present details for the modeling of the dy-
namics of the superparamagnetic filament and show that
aside from finite-size effects it is governed by a few relevant
parameters. Section III summarizes and discusses the results
from our numerical study and Sec. IV contains our conclud-
ing remarks.
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II. MODELING THE SUPERPARAMAGNETIC FILAMENT

We model the superparamagnetic filament by a bead-
spring configuration, as illustrated in Fig. 1 that, in addition,
resists bending like a wormlike chain �28�. Thus each bead in
the filament experiences a force due to stretching, bending,
and dipolar interactions. While the chemical linkers between
the beads are responsible for the resistance to bending and
stretching, we completely ignore their contribution to the hy-
drodynamic friction. So the filament interacts with the fluid
surrounding via the hydrodynamic friction of the beads that
incorporates their hydrodynamic interactions. In the follow-
ing we first set up the discretized version of the bending and
stretching free energies �29� and also formulate the dipolar
interaction energy from which we then calculate the forces
on a single bead. In a second step, the equations of motion
for the single beads are established with the help of their
mobilities on the Rotne-Prager level. Comments on numeri-
cal details and the scaling behavior conclude this section.

A. Energies and forces

A deviation of the distance li= �ti� of the beads from their
equilibrium value l0 obeys Hooke’s law and the total stretch-
ing free energy is

HS =
1

2
k�

i=2

N

�li − l0�2, �1�

where N denotess the total number of beads. Typically, we
consider relatively stiff springs so the variation of li is always
smaller than 0.1l0. The stretching force acting on bead i
obeys

Fi
S = − �ri

HS = − k�li − l0�t̂i + k�li+1 − l0�t̂i+1, �2�

where �ri
is the nabla operator with respect to ri.

The linkers connecting the beads convey some bending
rigidity to the filament. The bending free energy of an elastic
rod or a wormlike chain is given by �30�

HB =
1

2
A�

0

L

ds� dt̂

ds
	2

, �3�

where L is the total length of the filament, s the arclength
along it, and t̂ the unit tangent at location s. Referring the
bending stiffness A=kBTlp to the thermal energy kBT, one

obtains the persistence length lp that gives the length scale on
which the filament becomes flexible. Replacing dt̂ / �ds� by
�t̂i+1− t̂i� / l0, we arrive at the discretized version of the bend-
ing energy for the superparamagnetic filament,

HB =
A

l0
�
i=1

N

fi�1 − t̂i+1 · t̂i� , �4�

where t̂i= ti / li. We have introduced the factor

f i = 
1 for 2 � i � N − 1

0 for i = 1,N
� �5�

to let the index i in Eq. �4� still run from 1 to N, i.e., over all
beads. This facilitates the calculation of the bending force
Fi

B=−�ri
HB acting on each bead i:

Fi
B =

A

l0

 f i−1

li
t̂i−1 − � f i−1

li
t̂i−1 · t̂i +

f i

li+1
+

f i

li
t̂i · t̂i+1 t̂i

+ � f i

li+1
t̂i · t̂i+1 +

f i

li
+

f i+1

li+1
t̂i+1 · t̂i+2 t̂i+1 −

f i+1

li+1
t̂i+2� .

�6�

To arrive at Fi
B we have used the relations �ri

t̂i=1/ li�1− t̂i

� t̂i� and �ri
t̂i+1=−1/ li+1�1− t̂i+1 � t̂i+1�, where 1 is the unit

tensor and the symbol � means tensor product.
A single particle made from material with magnetic sus-

ceptibility � and subjected to an external magnetic field B
�more correctly the magnetic induction� aquires a magnetic
dipole moment

p =
4�a3

3�0
�B , �7�

where �0=4��10−7 N/A2 is the permeability of free space
and a is the particle’s radius. In the filament, the dipole mo-
ments pi of the beads interact with each other with a total
dipole-dipole interaction energy

HD =
�0

4�
�
i,j=1

N

�
pi · p j − 3�pi · r̂ij��p j · r̂ij�

rij
3 , �8�

where rij = �r j −ri�, r̂ij = �r j −ri� /rij, and �� means sum over all
i� j. When all the beads experience the same magnetic field
B=Bp̂, the total interaction energy becomes

HD =
4�a6

9�0
��B�2 �

i,j=1

N

�
1 − 3�p̂ · r̂ij�

rij
3 . �9�

Here we ignore that the local magnetic field differs from the
external B since all the induced dipoles contribute to the
local field. Taking into account the field from the nearest
neighbors of a dipole, one can show that this renormalizes
the susceptibility � and gives it a small anisotropy with ��

−���−0.25 for a typical value of ��1, where � and �
refer, respectively, to directions parallel and perpendicular to
the local filament axis �24�. In the following we are inter-
ested in the basic features of the system and therefore work
with the energy �9� to calculate the force Fi

D=−�ri
HD that all

magnetic dipoles excert on bead i:

FIG. 1. Bead-spring model for the superparamagnetic filament
consisting of N particles. Each bead at position ri experiences forces
due to the bending and stretching and due to interactions of the
magnetic-field induced dipoles located on the beads.
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Fi
D =

4�a6

3�0
��B�2�

j=1

N

�
2�p̂ · r̂ij�p̂ + �1 − 5�p̂ · r̂ij�2�r̂ij

rij
4 .

�10�

The filament is now driven by an external field whose direc-
tion p̂�t� and magnitude B�t� depend on time. For example, if
the direction is oscillating very slowly, the filament will fol-
low the field like a rigid rod since the induced dipoles prefer
to align themselves along a common line. However, if the
oscillations become faster, the hydrodynamic friction of the
beads with the surrounding fluid increases so that they are
not fast enough to form a straight line and the filament is
bending.

B. Equations of motion

The filament is immersed in a viscous fluid such as water.
On the length scale of microns and for times larger than the
momentum relaxation time, inertia can be neglected so that
the velocities vi of the beads are proportional to the forces
acting on them �11�. Hence the beads follow the equations of
motion

vi = �
j

�ijF j with F j = F j
S + F j

B + F j
D, �11�

where the forces F j
S, F j

B, and F j
D are given in the last section.

They all depend on the beads locations ri and the dipolar
forces also possess an explicit time dependence. The impor-
tant quantities in our treatment are the mobilities �ij. Roper
et al. considered the filament as a continuous line whose
friction with the surrounding fluid is governed locally by two
anisotropic friction coefficients for respective motions paral-
lel and perpendicular to the local direction of the filament
�24�. In our treatment, the anisotropic friction results from
hydrodynamic interactions between neighboring beads.
Moreover, hydrodynamic interactions between more distant
beads are also taken into account. Since induced flow fields
are long ranged �they decay as 1/r, where r is the distance
from a moving bead�, this effect cannot be neglected. In
general, hydrodynamic interactions constitute a complicated
many-body problem �11�, however, their leading contribution
is given by two-particle interactions. Moreover, if the par-
ticles are not too close to each other so that lubrication be-
comes important, the Rotne-Prager approximation can be
employed �11,31�. We use it in a version for spheres with
different radii ai and aj �34�. Whereas all spheres in the fila-
ment have the same radius ai=a �1� i�N�, we also attach a
larger sphere with radius a0 to the filament to mimic its load.
In the Rotne-Prager approximation, the self mobility is sim-
ply

�ii = �01 with �0 = 1/�6��ai� , �12�

and the cross mobilities read

�ij =
1

6��rij
�3

4
�1 + r̂ij � r̂ij� +

1

4

ai
2 + aj

2

rij
2 �1 − 3r̂ij � r̂ij� .

�13�

To obtain the particle paths ri�t� and thus the dynamics of
the filament, we numerically integrate Eqs. �11� using the
Euler method �35�. More accurate schemes such as the
Runge-Kutta method that would allow larger time steps dur-
ing the integration and thus speed up the simulations are not
useful since the maximum time step for the integration is
governed by the relaxation dynamics of local bending and
stretching deformations. At the time step chosen to avoid
numerical instabilities, the performance of the Euler method
is comparable, e.g., to the fourth-order Runge-Kutta scheme.
In concrete, the relative differences of the particle positions
calculated with both methods are smaller than 10−4.

C. Reduced equations of motion

Our modeling of the filament comprises several param-
eters. To identify the essential parameters that govern the
dynamics of the filament, we rescale the dynamic equations
appropriately so that only reduced variables appear. For ex-
ample, all lengths will be referred to the equilibrium length
of the filament that we approximate by L�Nl0.

To arrive at reduced equations of motion, we first rescale
the energies from Sec. II A with the help of characteristic
quantities:

HS =
1

2
k

L2

N
H̃S, HB =

A

L
H̃B, HD =

4�a6

9�0
��B�2N4

L3 H̃D,

�14�

where the reduced energies read

H̃S = N�
i
� li − l0

L
	2

, �15�

H̃B = N�
i

�1 − t̂i · t̂i+1� , �16�

H̃D =
1

N4�
i�j

1 − 3�r̂ij · p̂�2

�rij/L�3 . �17�

The prefactor kL2 /N of H̃S in Eqs. �14� is essentially the

stretching modulus of an elastic rod and H̃S averages the
square of the strain variable over the whole rod. The bending
free energy of the filament with a uniform curvature L /�2

amounts to A /L and the prefactor of H̃D gives the order of
magnitude of the energy of N interacting dipoles. To com-
pare these characteristic energies to each other, we introduce
the reduced magnetic field Bs �36� and the parameter ks:

Bs = � 4�a6

9�0
��B�2N4

L3

A/L
�

1/2

=
2�1/2a3�N

3�0
1/2l0A1/2B , �18�

ks =
kL2/N

A/L
=

N2l0
3

A
k . �19�

In the following, we will characterize the strength of the
magnetic field by Bs, the parameter ks will basically be kept
constant.
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Whereas the scaling factors in Eqs. �14� determine the
magnitude of the energies, the reduced energies of Eqs.
�15�–�17� distinguish between different types of stretching
and bending deformations and arrangements of dipoles along
the filament. For sufficiently large L�Nl0, they tend to con-

stant values H̃�
S , H̃�

B, and H̃�
D. We checked how finite-size

effects from the ends of the filaments influence these con-
stant values. Bending the filament to a semicircle, the devia-

tion from H̃�
B is around 1% when N=20, a typical number of

beads in the superparamagnetic filament both in experiments
and in our simulations. On the other hand, for the same num-

ber of beads H̃D for dipoles aligned along a straight line

deviates from H̃�
D by around 10% due to the long range na-

ture of the dipolar interaction.
To formulate the reduced equations of motion, we rescale

length, time, and velocity according to

r̃ = r/L, t̃ = �t,
dr̃

dt̃
=

1

�L

dr

dt
, �20�

where � is the frequency of the actuating magnetic field. The
reduced forces and mobilities follow from

F̃i =
Fi

A/L2 , �̃ij = 6��a
L

l0
�ij . �21�

Note that 6��aL / l0 is the total friction coefficient of the
filament without taking into account hydrodynamic interac-
tions. Applying the rescaled quantities to Eqs. �11� and using
Eqs. �14�, �18�, and �19�, one arrives at the reduced equation
of motion for bead i:

dr̃i

dt̃
= Sp

−4�
j

�̃ijF̃ j �22�

with

F̃ j = − �r̃j
�H̃B + ksH̃

S/2 + Bs
2H̃D� . �23�

The important parameter Sp in Eqs. �22�, introduced first by
Wiggins and Goldstein �23,37� and termed sperm number by
Lowe �26�, is defined via

Sp = �6��
a

l0
�L4

A
�

1/4

=
L

lh
. �24�

It compares the frictional to the bending forces and com-
pletely determines the dynamics of an elastic filament in a
viscous environment in the so-called resistive-force theory of
slender bodies �38�, where the friction with the surounding
fluid is described by two local friction coefficients per
length, 	� and 	�, for respective motions parallel and per-
pendicular to the local axis of the filament. Our definition of
Sp agrees with the one of Wiggins and Goldstein �23,37�
when we make the reasonable identification 	�=6��a / l0.
An immediate interpretation of Sp=L / lh is given with the
help of the elastohydrodynamic penetration length lh �23,37�.
Consider a sufficiently long filament �L
 lh� whose one end
undergoes an oscillation with frequency �. Then lh is the
length on which the oscillation penetrates into the filament.

On the other hand, if L� lh, the filament oscillates, as a
whole, like a rigid rod.

Other important quantities are the strength of the actuat-
ing magnetic field quantified by the parameter Bs and its time
protocol, which we will concretize in Sec. III. The reduced
stretching constant ks is always chosen such that variations in
the length of the filament are smaller than 10%.

We already mentioned that the dynamics of a continuous
elastic filament described within the resistive-force theory is
completely determined by the sperm number Sp, which espe-
cially incorporates the influence from the filament length. In
the superparamagnetic filament simulated by us through a
discretized model, finite-size effects are present, as already
discussed for the bending and dipolar energies. Hydrody-
namic interactions are of longer range than dipolar interac-
tions and we therefore discuss shortly how variations in the
length of the filament or in the number of beads influence the
dynamics for constant Sp, Bs, and ks. We keep the strength of
the magnetic field constant but let its direction oscillate in
the yz plane around the z axis with an angular amplitude of
50°. We solve the equations of motion �11� for real param-
eters and change the length of the filament for constant
equilibrium-bead distant l0 by choosing the particle numbers
N=20, 40, and 80. The reduced parameters are kept fixed at
the values Sp=7.7, Bs=6.6, and ks=4500 by changing, re-
spectively, the frequency � of the oscillating magnetic field,
its strength B, and the real spring constant k. Figure 2�a�
shows snapshots of the different filaments in the yz plane at
the same moments within the period of the oscillating field.
Hydrodynamic interactions are completely switched off. For
N=40 and 80 the configuration of the filaments are basically
identical whereas for N=20 one realizes small differences
due to the finite-size effects from the dipolar interactions as
discussed above. In Fig. 2�b� the configurations are shown at
the same moments within the period as in Fig. 2�a� but now
with hydrodynamic interactions switched on. They clearly
have a pronounced effect on the oscillating shape of the fila-
ment. Since the beads move collectively through the fluid,
hydrodynamic interactions reduce, roughly speaking the lo-
cal friction with the surrounding fluid. The filament can more
easily follow the oscillating magnetic-field direction and, as
a result, it is less bent. The finite-since effect is more pro-
nounced compared to Fig. 2�a� but does not change the con-
figurations significantly. So when in the following all our
simulations are done with N=20 to reduce computing time,
we are sure that the dynamics of the filament is mainly de-
scribed by the sperm number Sp, the reduced strength Bs of
the magnetic field, and its time protocol.

III. STUDY OF THE ARTIFICIAL SWIMMER

The actuated superparamagnetic filament in Fig. 2 does
not move on average in one direction since it performs a
reciprocal motion. This symmetry is broken when a load is
attached to one end of the filament as demonstrated by the
wonderful experiments of Dreyfus et al. where the load is a
red-blood cell �2�. In the following we study such an artifi-
cial swimmer in detail. As illustrated in Fig. 3, we actuate the
filament with a magnetic field B�t� whose strength is con-
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stant but whose direction oscillates about the z axis with an
angle ��t�=�max sin��t� �this time protocol differs from the
one used in Ref. �2��. As a result, the swimmer will move
with an average velocity v̄ along the z axis. However, in
contrast to spermatozoa, where the head is pushed forward
by damped waves traveling from the head to the tail �14,15�,
the superparamagnetic filament drags the passive load behind
itself by performing a sort of paddle motion with its free end
as indicated in Fig. 3. Note that the direction can be reversed
for certain parameters when the load particle also becomes
superparamagnetic, but we will not study this possibility fur-
ther. In our approach, hydrodynamic interactions between the
constituent beads are essential for the artificial swimmer to
move forward. In particular, they produce local friction co-
efficients 	� and 	� for respective motions parallel and per-
pendicular to the filament’s local axis that are not equal, 	�
�	�. This is a necessary prerequisit for swimming �27�. To

implement hydrodynamic interactions, we use the Rotne-
Prager approximation for the mobilities as introduced in Eqs.
�12� and �13� in the form that also allows for hydrodynamic
interactions between the filament’s beads and the larger load
particle. We simulate the artficial swimmer by solving the
equations of motion �11� numerically for two sets of param-
eters summarized in Appendix A. The first set is close to the
realization of the artificial swimmer in Ref. �2�. Since we
already now that the filament itself is governed by the di-
mensionless parameters Sp, Bs, and ks, we present our results
as functions of the sperm number Sp and the reduced field
strength Bs. In addition, we also show that the angular am-
plitude �max of the magnetic-field oscillations and the size a0
of the load particle influence the dynamics of the swimmer.

We discuss the performance of the swimmer by studying
in detail its average speed v̄ and its efficiency to move a
load. The speed v̄ is calculated by averaging the velocity v0
of the load particle over one actuation cycle:

v̄ =
1

T
�



+T

v0�t�dt , �25�

where T=2� /�. In order to obtain a reliable v̄ from Eq.
�25�, it is important that the swimmer has reached a steady
state at time  so that the swimming does not depend any
more on initial conditions. For small frequencies �Sp�1� this
state is reached rather quickly after one actuation cycle but
needs several cycles when Sp is increased. Secondly, we de-
fine the efficiency of the swimmer to transport a load by
comparing the energy dissipated by the load, when moved
uniformly with velocity v̄, to the total energy dissipated by
the swimmer:

� =
6��a0v̄

2

�
i=0

N

Fi · vi

, �26�

where the bar in the denominator means average over one
actuation cycle. The efficiency � indicates how much energy
from the total energy used to actuate the swimmer is em-
ployed to move the load particle forward with velocity v̄.

FIG. 2. Configurations of the superparamagnetic filament at the
same moments within one period of the oscillating magnetic field.
The reduced parameters Sp, Bs, and ks are kept constant while the
number of beads is changed. �a� Without hydrodynamic interac-
tions, �b� with hydrodynamic interactions. The numbers at the snap-
shots indicate the pair of variables � ,�t / �2�� for the time protocol
of the oscillating magnetic field, as illustrated in Fig. 3: �1� 50°,
0.25; �2� 0°, 0.5; �3� −35° ,0.88.

FIG. 3. For the artificial swimmer, a larger load particle is at-
tached to the filament. It is actuated by a magnetic field whose
direction is oscillating about the z axis with ��t�=�max sin��t�. The
two configurations of the swimmer are schematic drawings for posi-
tive and negative ��t�.
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In Fig. 4, we plot the mean velocity v̄= �v̄� and the effi-
ciency � as a function of the sperm number Sp. For the simu-
lations, the realistic parameter set I was used. The curve for
v̄ / �L�� in the upper graph of Fig. 4 follows the same behav-
ior as observed in Ref. �26,27�, where the elastic filament is
driven by an oscillating torque acting on one of its ends. For
small sperm numbers around Sp=3, the reduced velocity is
small since the superparamagnetic filament behaves nearly
like a rigid rod, as illustrated by the inset on the lower left. It
shows snapshots of the filament for Sp=3. As already men-
tioned, the oscillating motion of a rigid rod is reciprocal and
therefore cannot produce a directed motion of the swimmer.
Increasing the sperm number, e.g., by increasing the fre-
quency �, speeds up the artificial swimmer. At the maximum
value of v̄ / �L�� at around Sp=6, the increased friction with
the surrounding fluid is able to bend the whole filament �see
upper inset� which obviously promotes a high swimming ve-
locity. A further increase in Sp leads to a decrease in v̄ / �L��;
due to the strong friction with the fluid the whole filament
cannot follow the magnetic field and only a small wiggling

of its free end remains. The efficiency as a function of Sp
shows a similar behavior as v̄ / �L�� that is not completely
surprising: oscillating a rigid rod �small Sp� or fast wiggling
of the filament �large Sp� dissipates energy but does not pro-
duce an effective motion. So one expects a maximum of �
close to the maximum of v̄ / �L�� since � is determined by v̄2.
Note that the small absolute efficiency ��max=1.58�10−3� is
due to the fact that a large amount of energy is dissipated by
the motion of the filament. The shape of the velocity curve
changes when absolute velocities are plotted, as demon-
strated in the lower graph of Fig. 4. At Sp=3, the absolute
velocity is nearly zero �due to the small frequency� and the
maximum is shifted to a larger value around Sp=7.5. Inter-
estingly, the absolute velocities of the oscillating filaments at
Sp=6 and 12 do not differ so much, as first implied by the
upper graph. This suggests that the absolute swimming ve-
locity depends on two factors: �1� the shape of the oscillating
filament, where bending the whole filament favors large ve-
locities and �2� the oscillation frequency. The latter point
leads to the very slow decrease of v̄ as a function of Sp in the
lower graph. A comparison with the narrow maximum of �,
however, shows that a lot of energy is dissipated at large Sp
in the small wiggling motion of the filament. So operating
the artificial swimmer at around Sp=7 between the two close
maxima ensures the highest swimming velocities with very
efficient energy consumption.

In Fig. 5 we present reduced velocities and efficiencies as
a function of Sp for several reduced field strengths Bs, which
we simulated with parameter set II. We observe that with
increasing Bs the maxima of both the velocity and the effi-
ciency curves move to larger sperm numbers. We understand
this since larger magnetic fields mean stronger alignment of
the dipoles and, therefore, larger resistance to bending. Both
maximium velocity and efficiency only exhibit a small de-
pendence on Bs. After a slight increase of the maximum ve-
locity, it slightly decreases to a constant value �not shown in
the graph�. Note that the reduced velocities are larger by a
factor of 1.2 compared to Fig. 4 that we attribute to the larger
angular amplitude �max=57° compared to �max=45° used in

FIG. 4. Swimming velocity v̄ and efficiency � in units of �max

=1.58�10−3 as a function of sperm number Sp for reduced
magnetic-field strength Bs=5.76. Upper graph, reduced velocity
v̄ / �L��; lower graph, absolute velocity v̄ in units of vmax=5.56
�10−5 m/s. The insets show several snapshots of the filament’s
configuration for Sp=3, 6, and 12, respectively, indicated by the
dots. The numbers at the snapshots indicate the pair of variables
� ,�t / �2�� for the time protocol of the oscillating magnetic field, as
illustrated in Fig. 3: �1� 20°, 0.07; �2� 40°, 0.17; �3� −20° ,0.57; �4�
−40° ,0.67. Parameter set I was used in simulations.

FIG. 5. Reduced swimming velocity v̄ / �L�� and efficiency � in
units of �max=1.87�10−3 as a function of sperm number Sp for
several reduced magnetic-field strengths: �1� Bs=4.2, �2� Bs=6.07,
and �3� Bs=7.93. Parameter set II was used in simulations.
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Fig. 4. Finally, Fig. 6 summarizes the dependence of the
absolute swimming velocity on sperm number and reduced
field calculated with parameter set II. For increasing field
strength at constant Sp, the graph shows a strong increase of
the swimming velocity. At small Sp a subsequent saturation
at a constant value is visible. Note that the maximum veloc-
ity for constant Bs is shifted to higher sperm numbers when
Bs increases. This explains why the the maximum reduced
velocity v / �L�� in Fig. 5 does not exhibit a strong depen-
dence on Bs.

The swimming velocity v̄ clearly depends on the size or
the radius a0 of the load particle. In the upper graph of Fig. 7,
we plot its absolute value as a function of sperm number Sp
and a0 for a constant field strength Bs=5.76 calculated with
parameter set I. There is a pronounced maximum at Sp=8
and a0�3a �indicated by a filled circle�, where a is the ra-
dius of the superparamagnetic beads in the filament. The
velocity v̄ decreases for large a0 since the load becomes too
heavy to be efficiently moved by the oscillating filament. On
the other hand, when a0 approaches a, we also expect small
swimming velocities since the asymmetry of the swimmer
becomes small. However, even at a0=a the swimming veloc-
ity is not zero and therefore the swimmer still performs a
nonreciprocal motion. The reason is that the load particle is
not superparamagnetic and, therefore, a small asymmetry re-
mains. The plot for the reduced velocity v̄ / �L�� looks simi-
lar to the lower graph of Fig. 7; the absolute maximum is not
that pronounced and the maxium for constant a0 moves to
smaller sperm numbers when a0 is increased. The lower
graph shows how the efficiency � behaves as a function of Sp
and a0. The absolute maximum, indicated by an open circle,
is at Sp=6.6 and a0�5a. For comparison the location of the
maximum of the swimming velocity is again shown by the
filled circle. Since it is relatively sharp, one has to choose a
compromise for the performance of the swimmer between
the largest swimming velocity and the best efficiency. The
location of the maximum velocity certainly depends on the
magnetic-field strength. We expect that it is shifted to larger
radii a0 when Bs increases. However, we have not studied
this dependence in detail.

So far, the angular amplitude �max of the oscillating field
was always chosen sufficiently small so that the swimmer

was moving along the z axis. For large �max, however, the
mean velocity v̄ assumes a non-zero angle � with the z axis.
The upper graph of Fig. 8 summarizes our results. For Sp
larger than 7 and angular amplitudes beyond �max=70°, the
swimming angle � jumps from 0° to 90° and the swimmer
thus moves perpendicular to the z axis. Such an abrupt tran-
sition was also observed in the experiments by Dreyfus et al.
�39�. It is associated with a broken symmetry since the swim-
mer could also move into the opposite direction with
�=−90° depending on the initial condition. In the beginning
the filament and magnetic field point along the z axis. When
the magnetic-field direction turns towards the upper-half
space �y�0�, the filament follows. For large oscillation fre-
quencies � �large Sp�, it cannot, however, follow the field
direction into the lower-half space �y�0� and �=90° results,
as pictured in the third example of Fig. 9. For decreasing
sperm number, this sharp transition becomes smoother in-
volving swimming directions inclined relativ to the z axis.
Finally for Sp�3, the swimmer always swims along the z
axis by following the oscillating field as a nearly rigid rod
with only small bending. The simulations of the swimmer’s
movements for ��0 are very time consuming since the
swimmer needs some time to reach a steady state. Several
snapshots of its configurations for different parameters are
summarized in Fig. 9, their locations in the graphs of Fig. 8

FIG. 6. Absolute swimming velocity v̄ in units of the maximal
value vmax as a function of sperm number Sp and reduced magnetic-
field strength Bs. Parameter set II was used in simulations.

FIG. 7. Swimming velocity v̄ �in units of vmax=7.31
�10−5 m/s� and efficiency � �in units of �max=1.54�10−3� as a
function of sperm number Sp and load size a0 in units of a. The
filled and open circles indicate, respectively, the absolute maxima of
v̄ and �. Bs=5.76 and parameter set I was used in simulations.
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are indicated by filled black circles. The temporal evolution
of the first and second configurations in Fig. 9 are the dy-
namic analog of the static hairpin structures that form when
the aligning magnetic field is suddenly turned around by 90°
�19�. Finally, the lower graph of Fig. 8 plots the swimmming
velocity v̄ as a function of Sp and �max. Note that the Sp and
�max axes are differently oriented compared to the upper
graph. When the angular amplitude �max increases from 0°,
we observe that v̄ also increases �only partially shown in the
graph�. At Sp=7 and around �max=70°, a sharp decrease in v̄
coincides with the abrupt change of the swimming direction
from �=0° to 90° in the upper graph. For decreasing Sp, the
sharp drop in v̄ becomes smaller due to the occurrence of
inclined swimming directions.

IV. CONCLUSIONS

In this paper, we have presented a detailed numerical
study of a microscopic artificial swimmer realized recently
by Dreyfus et al. in experiments �2�. The elastic superpara-
magnetic filament is modeled by a bead-spring configuration

that also resists bending via a disrete version of the wormlike
chain. Friction with the surrounding fluid is described by the
single beads that also experience hydrodynamic interactions
with each other. The swimmer composed of the filament and

FIG. 8. Swimming velocity v̄ �in units of vmax=5.57
�10−3 m/s� and the swimming angle � �measured relative to the z
axis� as a function of sperm number Sp and angular amplitude �max

of the oscillating field. Bs=3.81 and parameter set II was used in
simulations.

FIG. 9. Snapshots of the swimmer’s configurations for different
parameters giving rise to different swimming directions. Their lo-
cations in the graphs of Fig. 8 are indicated by filled black circles.
The numbers at the snapshots indicate the pair of variables
� ,�t / �2�� for the time protocol of the oscillating magnetic field.
Sp=4.65: �1� 0°, 0.00; �2� 95°, 0.20; �3� 58°, 0.40; �4� −58° ,0.60;
�5� −95° ,0.80. Sp=5.34: �1� 0°, 0.00; �2� 100°, 0.25; �3� 0°, 0.50;
�4� −100° ,0.75. Sp=5.98: �1� 41°, 0.06; �2� 118°, 0.22; �3� 79°,
0.39; �4� −37° ,0.55; �5� −117° ,0.72; �6� −82° ,0.88.

FIG. 10. Swimming velocity v̄ and efficiency � in units of
�max=1.8�10−3 as a function of sperm number Sp. Parameters are
the same as the one used for the red experimental data points of Fig.
4 in Ref. �2�. The experimental points are included in this figure
with the symbol �.
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an attached load is actuated by a magnetic field whose direc-
tion oscillates.

We show that the superparamagnetic filament, aside from
finite-size effects, can be described by the dimensionless
sperm number, the magnitude of the magnetic field, and the
angular amplitude of the field’s oscillating direction. We then
study the mean velocity and the efficiency of the swimmer,
which we define appropriately, as a function of these param-
eters and the size of the load particle. In particular, we clarify
that the real velocity of the swimmer depends on two main
factors namely the shape of the beating filament and the os-
cillation frequency. For given magnetic-field strength an op-
timum sperm number �or oscillation frequency� can be cho-
sen such that mean velocity and efficiency are close to their
maximum values. Whereas the maximum rescaled velocity
v̄ / �L�� as a function of the sperm number only exhibits a
weak dependence on the magnetic-field strength Bs, the real
maximum velocity v̄ strongly increases with Bs since its lo-
cation is shifted to larger Sp��1/4. A study of the influence
of the load size for a particular field strength reveals, the
optimum load has to be chosen as a compromise between the
largest swimming velocity and the best efficiency. For an
increasing angular amplitude of the field’s oscillating direc-
tion, the direction of the swimming velocity changes in a

symmetry-breaking transition that is sharp for large sperm
numbers, becomes smoother for decreasing Sp, and ulti-
mately vanishes around Sp=3. Accordingly, the jump in the
swimming angle relative to the symmetry axis decreases
from 90° to 0°.

We also applied the time protocal of Ref. �2� �i.e., a con-
stant z component and an oscillating y component of the
magnetic field� to actuate the one-armed swimmer. For the
parameters of the red experimental data points of Fig. 4 in
Ref. �2�, we find nearly quantitative agreement, as illustrated
in Fig. 10. To achieve this, we had to rescale the actuating
magnetic field by a factor of 2.53 to account for the larger
distance of the beads in our modeling and therefore to com-
pensate for the weaker dipole interaction compared to the
swimmer in Ref. �2�. This makes sense since the strength of
the dipole interaction of neighboring dipoles is the important
parameter for the actuation of the swimmer. Deviations be-
tween our simulations and the experimental results might be
due to the fact that we use a spherical load particle compared
to the oblate shape of the red blood cell used in Ref. �2� and
that we neglect corrections to the actuating external field due
to the induced dipole fields.

In Ref. �40�, the authors envisage micromachines moving
in blood vessels and doing necessary repair work. The one-
armed swimmer offers an interesting possibility to propel
such micromachines. Our numerical studies demonstrate that
theoretical modelling helps to elucidate the basic features but
also to optimize the performance of such micro machines.
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APPENDIX A: PARAMETER SETS

In Table I, we summarize the parameters in sets I and II
used for our numerical studies. The oscillation frequency �
=2� /T and the magnetic-field strength B were varied to
study the respective ranges of sperm number Sp and the re-
duced magnetic field Bs. The spring constant k, the time step
�t for the Euler integration, and the number ns of simulation
cycles were adjusted as necessary. Typical values are shown.
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